首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7832篇
  免费   667篇
  国内免费   1152篇
化学   8676篇
晶体学   64篇
力学   17篇
综合类   39篇
数学   260篇
物理学   595篇
  2023年   72篇
  2022年   98篇
  2021年   181篇
  2020年   321篇
  2019年   266篇
  2018年   200篇
  2017年   215篇
  2016年   326篇
  2015年   310篇
  2014年   328篇
  2013年   710篇
  2012年   432篇
  2011年   463篇
  2010年   429篇
  2009年   452篇
  2008年   571篇
  2007年   557篇
  2006年   526篇
  2005年   501篇
  2004年   478篇
  2003年   405篇
  2002年   333篇
  2001年   247篇
  2000年   213篇
  1999年   169篇
  1998年   118篇
  1997年   91篇
  1996年   89篇
  1995年   91篇
  1994年   98篇
  1993年   97篇
  1992年   67篇
  1991年   45篇
  1990年   36篇
  1989年   24篇
  1988年   24篇
  1987年   12篇
  1986年   12篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有9651条查询结果,搜索用时 31 毫秒
991.
Activators generated by electron transfer (AGET) was integrated into atom transfer radical coupling (ATRC) systems to drastically reduce the amount of copper catalyst required to achieve dimerization of monohalogenated polystyrene (PStX) precursors. PStCl or PStBr, prepared by ATRP, were activated and coupled in ATRC systems with varying equivalents of the reducing agent tin(II) ethyl hexanoate (Sn(EH)2) with ligand‐bound copper(I) and/or copper(II) present. Effective coupling was only observed in PStBr systems, with total copper content in the reaction mixture able to be reduced into the range of 10–25% of what is typically reported in traditional ATRC reactions of PSt while maintaining coupling yields of >50%. Additional reducing agents, glucose and ascorbic acid, were also studied and were found to be even more effective in some AGET ATRC reactions compared with Sn(EH)2. Best results were achieved with ascorbic acid as the reducing agent (>80% coupled product) with total copper content 25% of what was used for a traditional ATRC. Using an activators regenerated by electron transfer ATRP–AGET ATRC sequence resulted in an overall reduction of total copper down to 0.1–0.25% for the overall reaction sequence (compared with a traditional ATRP–ATRC sequence). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
992.
Diels–Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1‐benzocylcobutene‐1′‐phenylethylene (BCB‐PE) or 4‐hydroxyethylbenzocyclobutene (BCB‐EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and ε‐caprolactone (ε‐CL), respectively. The OH‐end groups were transformed to isopropylbromide groups by reaction with 2‐bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2‐dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1104–1112, 2010  相似文献   
993.
994.
A systematic study of the free radical photoinitiated alternating crosslinking copolymerizations of dialkyl maleates and furmarates with multifunctional vinyl ethers was carried out. The photocopolymerizations were fast and highly efficient when carried out using a variety of α‐cleavage photoinitiators. The effects of the structures of the both the unsaturated esters and the vinyl ether monomers were examined. Dialkyl maleates were observed to be more reactive than the corresponding fumarate esters. The photopolymerization rates of several of these comonomer pairs were compared with standard diacrylate and dimethacrylate monomers. A range of different physical properties can be obtained by varying the length of the alkyl chain on alcohol portion of the unsaturated ester monomer. Prospects for the use of these comonomer systems in UV curable coatings, adhesives, printing inks, and composites are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
995.
996.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
997.
A novel methacrylate monomer bearing 5,10,15,20‐tetraphenylporphyrinato palladium(II) (PdTPP) (monomer 1a ) was synthesized and copolymerized with isobutyl methacrylate (IBM) and 2,2,2‐trifluoroethyl methacrylate (TFEM) to give poly (IBM‐co‐TFEM) bearing PdTPP (copolymer 2a ) as a dye‐conjugated oxygen‐permeable polymer for pressure‐sensitive paint applications. The introduction of PdTPP into copolymer 2a was confirmed by UV–vis spectroscopy and extended X‐ray absorption fine structure analysis. The Stern–Volmer plots of the copolymer 2a and a mixture of PdTPP and poly(IBM‐co‐TFEM) both showed downward curvature, unlike that of the platinum complex analogue (copolymer 2b ) previously reported. The plots were successfully fitted with a two‐site model to give two distinct Stern–Volmer constants (KSV1 and KSV2) and the partition ratio f1. Interestingly, the f1 values for the copolymer 2a were almost constant at about 0.98, whereas those of the mixture of PdTPP and poly(IBM‐co‐TFEM) increased from 0.889 to 0.967 as the temperature was increased. This finding suggests that there are two distinct microheterogeneities, one temperature‐dependent and the other temperature‐independent, in the mixture of PdTPP and poly(IBM‐co‐TFEM). The dye‐conjugation approach effectively eliminates the temperature‐dependent, but not the temperature‐independent microheterogeneity. The luminescence decays of copolymers 2a and 2b and the corresponding mixtures in the absence of oxygen indicated that the temperature‐dependent microheterogeneity involves an oxygen diffusion process, whereas the temperature‐independent one appears to be inherent nature in PdTPP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 663–670, 2010  相似文献   
998.
Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO4·5H2O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1–8.2% relative standard deviation; and detection limits were 6.9 ppb for H2, 1.8 ppb for O2, 1.6 ppb for N2, 6.4 ppb for CH4, 13 ppb for CO, and 5.4 ppb for CO2.  相似文献   
999.
The synthesis of statistical and block copolymers, consisting of monomers often used as resist materials in photolithography, using reversible addition‐fragmentation chain transfer (RAFT) polymerization is reported. Methacrylate and acrylate monomers with norbornyl and adamantyl moieties were polymerized using both dithioester and trithiocarbonate RAFT agents. Block copolymers containing such monomers were made with poly(methyl acrylate) and polystyrene macro‐RAFT agents. In addition to have the ability to control molecular weight, polydispersity, and allow block copolymer formation, the polymers made via RAFT polymerization required end‐group removal to avoid complications during the photolithography. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 943–951, 2010  相似文献   
1000.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号